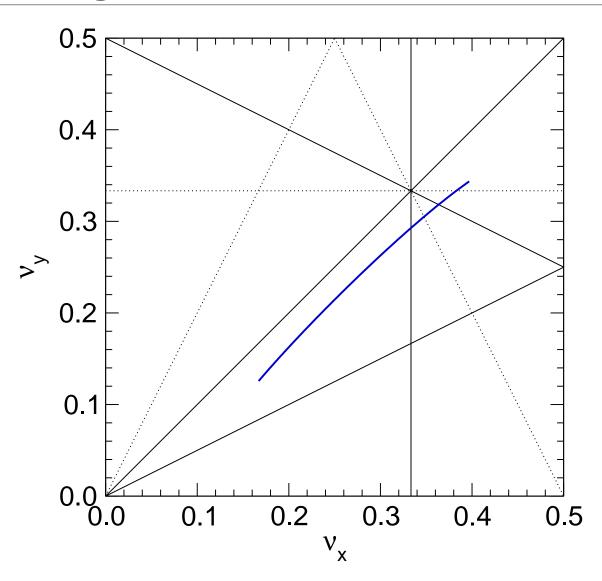
EMMA Lattice Configurations

J. Scott Berg
Brookhaven National Laboratory
EMMA Phone Meeting
13 December 2006

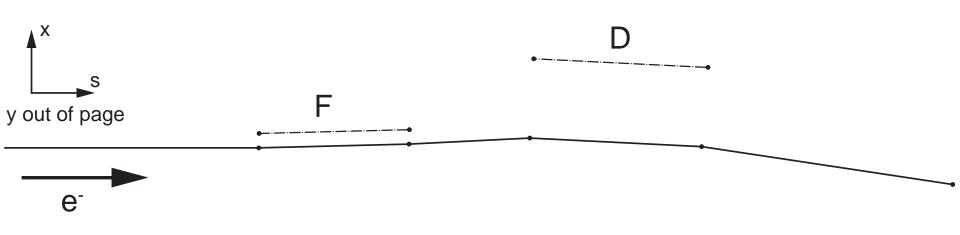
Non Collider


Baseline Lattice

- Based on desired behavior in the tune plane
 - Avoid $\nu_x 2\nu_y = 0$ and $\nu_x \nu_y = 0$ resonances
 - ⋆ Driven by upright sextupole, coupling
 - * Crossed slowly because tune varies parallel to them
 - Keep horizontal tune high: small aperture
- Time of flight same at low and high energy
- Attempt to get 500 cell-turns at a = 1/12
- Initial guess at pole tip fields same for D and F

Tune Footprints Baseline Configuration

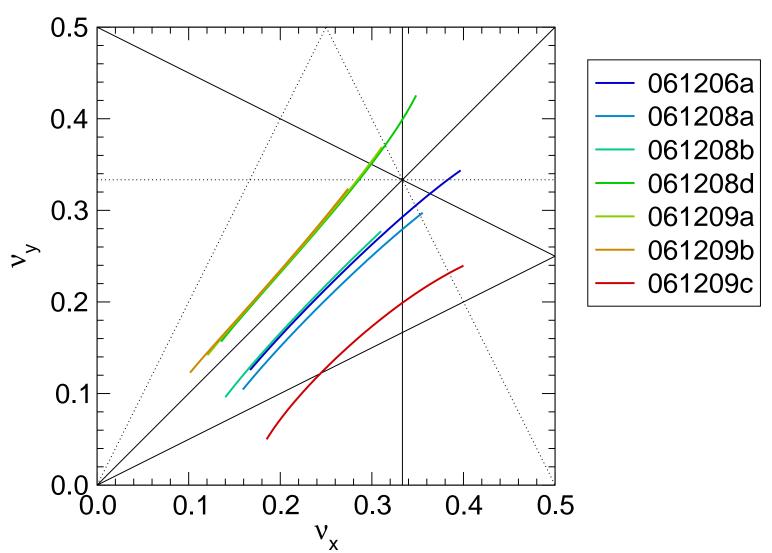
Lattice Parameters


- Lattice consists of displaced quads
 - Displacement is position of quad center
 - Magnets are rectangular (constant field lines are straight)
- Coordinate system bends by half angle at entrance, half angle at exit
- Assume end fields maintain $cos(2\theta)$ multipole symmetry (more later!)
- Note: did not seek a harmonic of 1.3 GHz; assumed we could set the frequency

Minimum KE	10 MeV
Maximum KE	20 MeV
Cells	42
Long drift	210 mm
Short drift	50 mm
F length	59.957 mm
F angle	-68.101 mr
F displacement	8.581 mm
F gradient	6.582 T/m
D length	73.088 mm
D angle	217.701 mr
D displacement	32.944 mm
D gradient	-4.862 T/m

Non Collider

Lattice Cell Geometry


Alternate Configurations Varying the Tune Footprint

- First, try to vary the tune footprint
- Stay between $\nu_x \nu_y = 0$ and $\nu_x 2\nu_y = 0$
 - Cross different numbers of upright third order resonances
- Go above $\nu_x \nu_y = 0$
 - Cross different numbers of upright third order resonances
- Cross $\nu_x 2\nu_y = 0$
 - Low energy horizontal tune at 0.4
 - ◆ High energy vertical tune at 0.05

Tune Footprints Alternate Configurations

Non Collider

Modified Lattices

- The beam pipe doesn't move
- The quadrupole gradients can change
- The quadrupoles can be displaced horizontally
- Minimize the increase in the horizontal beam pipe aperture
- Table highlights which parameters are increased by which lattices
- Conclusions
 - Lattices above $\nu_x \nu_y = 0$ increase aperture too much and aren't as interesting for a real machine: drop them
 - Low-tune lattice between $\nu_x \nu_y = 0$ and $\nu_x 2\nu_y = 0$ defined aperture. Keep because it avoids low order resonances (the emergency lattice!).

Lattice Specs Different Tune Profiles

	061206a	061208a	061208b	061209c	061208d	061209a	061209b
$\overline{B_{1D}}$	-4.862	-4.284	-3.756	-3.924	-5.206	-4.611	-3.769
Δx_D	32.944	37.976	44.852	38.794	31.181	35.944	45.673
$x_{min,D}$	-39.282	-44.609	-53.547	-45.131	-40.021	-46.953	-60.620
$x_{max,D}$	-18.172	-22.677	-28.697	-24.877	-16.408	-20.563	-29.221
$x_{pmin,D}$	-6.337	-6.632	-8.695	-6.337	-8.841	-11.009	-14.947
$x_{pmax,D}$	14.773	15.299	16.155	13.917	14.773	15.381	16.452
Δy_D	10.977	10.142	9.779	11.659	14.453	11.173	8.175
B_{1F}	6.582	6.021	5.187	6.473	6.076	5.384	4.401
Δx_F	8.581	9.280	10.452	8.174	7.867	8.581	10.442
$x_{min,F}$	-25.879	-26.374	-30.283	-24.559	-28.290	-31.710	-38.907
$x_{max,F}$	12.206	11.438	10.334	11.255	12.957	12.205	10.345
$x_{pmin,F}$	-17.298	-17.094	-19.831	-16.385	-20.424	-23.128	-28.465
$x_{pmax,F}$	20.786	20.718	20.786	19.429	20.824	20.786	20.786
Δy_F	5.625	6.194	6.508	8.892	6.597	5.540	5.809
$x_{min,C}$	-14.482	-14.494	-17.223	-13.695	-17.636	-20.300	-25.415
$x_{max,C}$	20.025	20.025	20.180	18.701	20.084	20.124	20.225
Δy_C	9.310	8.675	8.322	11.073	11.940	9.260	8.175

Alternate Configurations Shifting the Time of Flight Parabola

- Want to explore the effect of the time of flight parabola shape on longitudinal dynamics
- Also, having the same time of flight at minimum and maximum is probably not optimal
- Examine lattices with location of minimum at 14 MeV and 16 MeV kinetic energy
- Conclusions
 - For high tune lattices
 - * Required magnet aperture increases are small
 - * Small increase in required magnet gradients
 - ◆ For low tune lattice, aperture increases are unacceptable
 - ★ Hope we don't have severe resonance crossing problems: will make it hard to study longitudinal dynamics

Lattice Specs Shifted ToF Parabola

	(061206a)		(061209c)		(061208b)	
	061210c	061210d	061210e	061210f	061210g	061210h
$\overline{B_{1D}}$	-5.009	-4.573	-3.994	-3.636	-3.955	-3.355
Δx_D	27.909	42.107	35.751	50.666	35.567	62.425
$x_{min,D}$	-35.616	-46.369	-42.242	-55.355	-47.394	-66.155
$x_{max,D}$	-13.136	-27.477	-21.278	-37.224	-20.795	-44.298
$x_{pmin,D}$	-7.707	-4.262	-6.491	-4.689	-11.827	-37.303
$x_{pmax,D}$	14.773	14.630	14.473	13.443	14.773	18.127
Δy_D	11.004	10.936	11.657	11.672	9.775	9.806
B_{1F}	6.732	6.286	6.558	6.153	5.405	4.752
Δx_F	6.216	12.505	7.378	11.804	5.536	18.574
$x_{min,F}$	-23.702	-29.803	-23.085	-29.102	-26.980	-36.072
$x_{max,F}$	15.892	5.710	13.409	4.615	15.520	1.350
$x_{pmin,F}$	-17.486	-17.298	-15.708	-17.298	-21.444	-17.498
$x_{pmax,F}$	22.108	18.215	20.786	16.419	21.056	19.925
Δy_F	5.566	5.688	8.886	8.912	6.435	6.558
$x_{min,C}$	-14.860	-14.132	-13.151	-14.201	-19.081	-14.482
$x_{max,C}$	21.174	17.681	19.965	15.910	20.273	19.522
Δy_C	9.392	9.152	11.096	10.982	8.424	8.126

Alternate Configurations Aperture Requirements

- F magnet:
 - ◆ Maximum gradient: 6.732 T/m
 - ◆ Half-height of 8.912 mm
 - ◆ Horizontal: vacuum chamber from -19.831 mm to 22.108 mm
 - ◆ Maximum vacuum chamber distance into magnet: 30.283 mm
- D magnet:
 - ◆ Maximum gradient: -5.009 T/m
 - ◆ Half-height of 11.672 mm
 - ◆ Horizontal: vacuum chamber from -8.695 mm to 16.155 mm
 - ◆ Maximum vacuum chamber distance into magnet: 55.355 mm
- Cavity
 - Assumed 175 mm length
 - ◆ Half-height of 11.096 mm
 - ◆ Horizontal: vacuum chamber from -17.223 mm to 21.174 mm

End Fields and Magnet Symmetry

- We know the field in the magnet body, and we know it outside
- What does the field look like in-between
- Two possibilities:
 - Midplane symmetry: maintain field form in midplane

$$B_y(x, y = 0, s) = f(s)B_{y0}(x)$$

- * Appropriate for wide magnets with small vertical aperture
- Multipole symmetry

$$rB_{\phi}(r,\phi,s) = f(s)r^{m}\cos(m\theta) + O(r^{m+2})$$

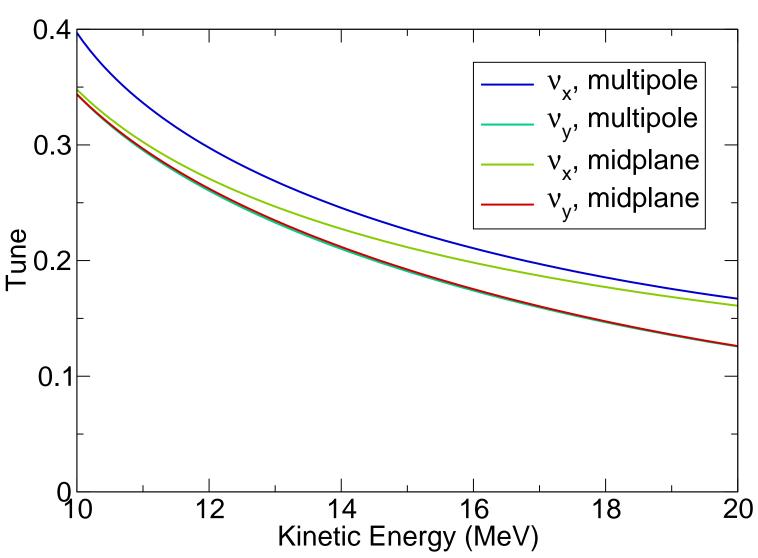
- ★ Appropriate for magnets constructed with that symmetry: like the EMMA quadrupoles
- Maxwell's equations tell us the rest

End Fields and Magnet Symmetry What's the difference?

- Let's do the dipole case, sharp field change
- Midplane symmetry

$$B_x = 0$$
 $B_y = B_0 \left| 1 - \frac{1}{2} y^2 \delta'(s) \right|$ $B_s = B_0 y \delta(s)$

Multipole symmetry


$$B_x = -\frac{1}{4}xy\delta'(s)$$
 $B_y = B_0\left[1 - \frac{1}{8}(x^2 + 3y^2)\delta'(s)\right]$ $B_s = B_0y\delta(s)$

- Note: particle in midplane gets horizontal kick in multipole case
 - Integral is zero, but:
 - Particle gets kick, drifts to different location, gets different reverse kick
- Difference large in EMMA (quads, not dipoles)

Baseline EMMA Tunes Different End Field Symmetries

More to Do

- Define RF parameters
 - Cavity every third cell, 360 kV/cavity desirable
 - Need to define frequency tuning range (info available, I just haven't computed it...)
- Clearly getting some idea of the true end fields is important

